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Understanding the properties of local field theories which undergo 

a spontaneous breaking of an internal symmetry has become one of the 

most significant problems in elementary particle physics. Such a mechanism 

has been invoked for some time to explain the structure of weak interactions. [ 11 

With the dawning realization that the strong interactions may be understood 

in terms of the phase or symmetry properties of the ground state of a 

local gauge field theory’ ‘I the problem has reached the level of importance 

it has today. In view of the fact that the study of phase transitions, and 

the critical behavior of physical systems near these transitions, has 

always been one of the principal areas of research in statistical mechanics 

it is natural that a new class of techniques for studying field theories has 

grown up based on methods developed for application to problems of 

statistical mechanics. Notable in this respect is the Wilson renormalization 

group[ 31 (RG) or equivalently Kadanoff ‘s block spin methods [41 which 

allow one to determine (in an almost imperial way) the large distance or 

bulk properties of a system from its local properties. 

This feat is achieved by selectively focusing on the physics at each 

individual length scale between the microscopic level of the local interactions 

and the macroscopic scale where the bulk properties become manifest. 

This paper is intended as a pedagogical analysis of a simple field theoretical 

system which undergoes a phase transition by the methods of the RG. Along 

the way a transition will be made to a simple spin system analog. A phase 
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transition will be found for this spin system’s quantum mechanical ground 

state which to the author’s knowledge has not been previously reported. 

In this discussion a starting simplification is made by putting the 

field theory on a lattice. This is done in what has come to be called the 

Hamiltonian formulation of a lattice theory wherein time remains a continuous 

parameter. This approach is equivalent to finding the properties of a 

“spin” system at zero temperature. What one desires to calculate are 

the ground state and low lying excitations (particles) of the system. A 

field theory Bamiltonian (H) on the lattice resembles a set of continuous 

spins which have, in general, complicated self interactions (V(4)) and 

ferromagnetic couplings (the spatial derivatives expressed as finite differences). 

By a change of basis from the natural Schradinger representation in which 

the fields are diagonal to a basis of the oscillator states of the local terms 

in H one achieves an analogy to a quantized spin system where the spins 

take on discrete values, have ferromagnetic couplings, and interact with 

a “magnetic field” generated by the level structure of the local oscillators. 

This suggests a well-defined approximation scheme, albeit one which causes 

serious problems with Lorentz invariance. By restricting the number of 

levels which are allowed to participate in any oscillator one transforms 

the theory into one of interacting finite spins. An example of the reverse 

of this procedure is the Holstein-Primakoff substitution for spin waves. [51 

The resulting system may be studied by means of the RG to determine 

the global properties of the ground state as well as the low lying excitation 
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spectra. There are two areas of difficulty in carrying out this program in 

general. Both are related to the necessity of reducing the number of 

participating degrees of freedom as one changes the length scale. The 

procedure to be followed may be stated roughly as: (1) Divide the complete 

system into small subsystems. (2) Isolate the terms in the Hamiltonian 

which only deal with a particular substystem, and solve this finite problem 

exactly. (3) Re-express the sub-Hamiltonian in diagonal form in the new 

basis, and by the same transformation re-express the operators involving 

the degrees of freedom in this subsystem in the new basis. (4) Re-express 

the total Hamiltonian in terms of the subsystems. One has reduced the number 

of degrees of freedom in the problem but each of them has increased in 

complexity. This one overcomes, in the same spirit that we originally 

neglected the higher oscillator states, by neglecting all but the few lowest 

states of each subsystem. If one is dealing with a problem in more than 

one space dimension there is a further difficulty due to the fact that the 

number of local operators for each subsystem needed to describe the new 

Hamiltonian has also increased. Sometimes the solution to the first 

problem is also the solution to this problem, as all of the operators may 

become the same if very few states of the subsystem are kept. However, 

in general one must find some way of replacing these operators by some 

average or effective operators. Having dealt with the problems, or not, 

one may repeat the procedure again, (eventually, in fact, usually very 

soon one mast face them), and again, and again until the quantities one is 
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interested in computing converge. What one discovers is fixed point 

behavior, eventually when one carries out this procedure nothing discernable 

happens. The new Hamiltonian is the same (up to possible resealing of 

some quantities) as the last one, and one may quit. This is very reasonable 

when one realizes that, for example, in a three dimensional system where 

each iteration involves a change in the length scale of two, after 26 

iterations each subsystem represents a mole of spins. When one has 

reached this point it is quite reasonable to suppose that the bulk properties 

have long since manifested themselves. 

In Section II we will describe a procedure for replacing a lattice 

field theory, in this case A $4, by a system of coupled spins. In Sections 

III and IV we will investigate the resulting spin system by means of the 

renormalization group, discover that the system possesses a phase transition, 

and then perform some tests to see how well we have done in describing 

the system. In Section V it will be shown that the spin system has a 

well-defined continuum limit which is, however, essentially nonrelativistic 

in character. The implications of these results for the starting field theory 

will be discussed. 
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II. THE FINITE SPIN APPROXIMATION 

The simplest field theory to exhibit a spontaneous breakdown of an 

internal symmetry is scalar 44 in one space dimension with a negative 

mass term. The Hamiltonian for this theory on a spatial lattice may 

be written 

i2 .4 
II- iX$ 

2 1 (2.1) 

i a 

. 

where a is the lattice spacing n1 = d$/dt, and 

= - ihij/a (2.2) 

The spatial derivative has been approximated by finite differences. 

Each of the local terms in H describes an anharmonic oscillator, 

and the nonlocal terms couple these oscillators. We can rewrite H in terms 

of the oscillator state at each site by solving the Schrodinger equation 

(5 +xx4 +(> +$)x’)In> = EnIn> 

and computing the dipole matrix elements 

%Ul 
= <m[x[n> 

(2.31 

(2.4) 

This done, H can be written in the form 
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H=a 
xi 

Ei _ ..$ ,j x 8 + ‘) (2.5) 

i 

where E is a diagonal matrix, and 4 is a matrix with non-vanishing elements 

between even and odd states. These matrices are infinite dimensional, 

and H acts in the basis generated from 

@Ini' 1 O<n.lm (2.6) 
i 

What we propose as an approximation scheme is to consider a sequence 

of bases generated from 

81 ni> i O_<n <M (2.7) 
i 

The Hamiltonian which results from this truncation describes a set of 

coupled spins with Zj + 1 = M + 1. 

The breakdown of the symmetry ( 4 * - $1 in @4 is intimately related 

to the existence of two nearly degenerate oscillator states in the limit 

2 
where p becomes large and negative. Here the level structure will 

resemble that depicted in Figure 1. We may expect that the qualitative 

features of this breakdown can be understood from a careful study of just 

these two levels. This is indeed the case and we will see that much of the 

conventional lore can be explained in terms of the physics of these two 

states. 
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The matrix 4 has the form <O 1 x 1 IS ox in this approximation, and 

the two lowest entries of E can be written as + (E. f Ei) + $ (Ei - Eo)uZ, 

where the o’s are the usual Pauli spinors. Thus H achieves the general 

form 

i 2 i iii 
H=a EU -g u u 

z x x 

with 

E0 = +(Eo +Ei) 

E = $(Ei - Eo) 

g2 = -$I.0 Ix[ 1> I2 

(2.8) 

(2.91 

This is also the Hamiltonian of an Ising ferromagnet with a magnetic 

field perpindicular to the axis along which the spins couple, and is a 

problem of interest in its own right. It is also perhaps the simplest physical 

system to have nontrivial critical behavior at zero temperature. This 

analogy will be put to very good use in the sequel. 

We would recover a great deal more of the structure of the theory 

if we kept the first four states in each oscillator, for then the theory 

could have bosonic excitations of one well or the other. This is not 

essential, though, to understand the breakdown of symmetry, and has 

not been pursued at this time. 
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III. THE RENORMALIZATION GROUP APPROACH 

We now turn our attention to finding the ground state of the Hamiltonian 

(2.8). Following Wilson’ 31 we will attempt to treat the problem by 

successive rediagonalization of the lowest states of a sequence of Hamiltonians 

which describe different length scales. The procedure is essentially 

that outlined in the introduction. If we keep only two levels at each stage 

the procedure may be performed analytically, and is useful to gain an 

understanding of how things work. 

Consider two adjacent spins, say so, and sl. The terms in H which 

only involve these spins will be called their sub-Hamiltonian, for these 

spins it is 

Ho. 1 
= ZEO-e(ozO + o-J)-g2ux 0 1 crx 

This may be written as a four by four matrix 

H0,1 

(3.1) 

+ 2E” 

(3.2) 

corresponding to the four possible states ( If f >, It 1 >, 11 t >, 11 1 >). 

In this basis the operators ox0 @ 11 
1 

, and fro@ ox1 take the form 
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L- (T 1 oxO@ ni = 

RE (T flO@ 0, 
1 = 

0 0 1 0 

0 0 0 1 

1 0 0 0 

0 1 0 0 

0 1 0 0 

1 0 0 0 

0 0 0 1 

0 0 1 0 (3.3) 

The sub-Hamiltonian H is easily diagonalized, giving eigenvalues 

2E” + m, and ,“A’ * g2. If k, and flR are re-expressed in the 

new basis they take the form 

L CT = 

i 

l 

0 

A 

B 

0 

0 

A 

B 

0 

A 

.O 

0 

B 

A 

0 

0 

B 

-B 0 

0 B 

0 A 

A 0 

B 0 

0 B 

0 -A 

-A 0 
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where 

A2 = + (1 + g2/m) 

B2 = 5 (1 - g’/m)) (3.5) 

and the matrices are arranged so that Ho 1 has its eigenvalues in increasing 

order on the diagonal. Notice that if at this stage we elected to keep all 

four states that oL and oR would be different operators, and in subsequent 

manipulations it would be necessary to always keep track of the left-most 

and right-most spins of the block. Supposing that for the ground state only 

the lowest two states are important, and thus only keeping the first two by 

L 
two submatrix of each operator we find that o and cR are the same and 

are just in the form A o . 
X 

This part of Ho 1 can also be written in terms 

of a constant and the spinor o . z 
The o’s no longer act on the spins but 

rather on the two lowest states of Ho 1. 

Suppose now that all of the spins are arranged in pairs, and that 

this procedure has been carried out for every pair. The full Hamiltonian 

can now be rewritten approximately in terms of the lowest two states of 

each pair as 

H y Hi I ai 
Z 

2 i 
El0 - slozl - gi ox ox 

i+l. 
> (3.6) 
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Now the sum extends over all pairs. Hi is in a form identical to H z Ho 

except that we have made the replacements 

al = 2a 

El 

0 
= Eoo - (go2 + 

El = (W - go2)/4 

2 
gi = go2(i f go2/&cq),4 (3.7) 

where we have designated the starting values of E”, g 
2 

, and E with the 

subscript zero. 

If the approximation has not been too severe,’ H1 should describe the 

same large distance theory as Ho, The short distance properties of Ho 

are replaced in Hi by a contribution to the background energy density 

EO. The parameters e1 and gj2 still describe the spectrum of excitations 

away from the ground state, which depends on the original length scale 

such that in terms of the pairs they are very roughly about half their 

original size. Having performed the analysis for the first iteration, the 

rest is easy. Simply carry out the replacements of Eq. (3.7) over and 

over again. E” will converge to a constant which can be interpreted as 

the ground state energy density per spin. The remaining part of H, will 

still describe the low lying excitations. The most remarkable feature of 
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2. this iteration is fixed point behavior. Clearly if either E or g is zero, 

then they are both, except to be divided by two, reproduced unchanged. 

So these values of the parameters correspond to fixed points of the 

iteration. There is one other fixed point of Eq. (3.7) which is not SO easy 

to see, but which occurs when e/g2 = 1.26. The behavior of the parameters 

is easier to follow by considering what happens to their ratio. Defining 

LY = 2e/g2 we find that under one iteration 

kL-2 - 1 
Ly ““n+i =2 i+c! 

n 
d: d++i F f(a) (3.8) 

Fixed points in the iteration correspond to the solutions of w = f(a), which 

are (Y = 0, cr ‘Z 2.52 E (Y c, andn= a. If 0 < LY < ec then f(a) < (Y so that 

in subsequent iterations ru will decrease and approach zero where it must 

stop since f(0) = 0. If LY > cyc then f(cu) > LY so that cr increases indefinitely. 

E = 0 (a = 0) and g2 = 0 (a = m) are then infrared stable fixed points while 

elg2 = 1. 26 (cy = (uc) is an ultraviolet stable fixed point. In Figure 2 the 

function (Y - f(o) is plotted, and the behavior of cy under successive iterations 

is indicated graphically. The implications of this kind of behavior are 

profound. The large distance or macroscopic properties of a system with 

a starting value of (Y < cc or a> (Y are completely different. The system 
C 

has a phase transition! 
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In both limits. after many iterations the Hamiltonian achieves a 

trivial form. If a0 < DC, the large distance theory is one described by 

n 
2 E ‘0, zngn2 -gm 

2 i.e. a pure Ising system with no magnetic field. 
n 

The ground state is doubly degenerate with all the spins polarized along 

f ,^. The lowest energy excitation is the formation of one domain boundary 

with all the spins oppositely polarized to the left and right of the boundary. 

2 
The energy of this state above the ground state is 2agm . These excitations 

are the soliton or kink states of the broken $4 theory. If co > cc the large 

distance theory is described by Zngn2 -L 0, Znen *em. 

This is a system of uncoupled block spins, each of which interacts 

with a magnetic field which is screened by the short distance fluctuations. 

The ground state is not degenerate and has all of the spins aligned along 

A 
z. The lowest energy excitation is a single spin flip with an energy 

2ae m. These are the analogs of the normal bosonic states of unbroken 

44. In both cases if cy begins very near the critical value the energy 

of the lowest excitation becomes very small vanishing when a = (Y . 
C 

This is another hallmark of a phase transition, the appearance of a massless 

excitation or infinite correlation length at the critical point. 

We have made severe approximations in getting these results but 

have gained some insight into the structure of the theory at large distance. 

One now faces the task of investigating the validity of these approximations. 

Especially if one wishes to obtain useful quantitative results, and also to 
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check whether the qualitative features change with a more careful analysis. 

We can systematically improve the calculations of the spin system by 

keeping more states at each iteration. If the properties converge, and 

do not change in any qualitative way then we may feel that we understand 

the physics of this system. To study the iteration with more than two 

states requires the use of a computer, and a study of this kind has been 

carried out keeping 4 and 8 states requiring the diagonalization at each 

iteration of a 16 x 16 or a 64 x 64 matrix respectively. Keeping more 

states would have exceeded the available storage capacity of the computer. 

For four and eight states the procedure is very much like that already 

described for two states. For four states the starting Hamiltonian was 

the one generated in the study of the two state approximation, only this 

L 
time all four states were kept. The left hand spin ff , and the right hand 

R 
spin o , are different operators and both of them are kept. The first 

iteration consists of solving the 16 x 16 sub-Hamiltonian 

co@ fli + no@ E1 - gZu,O@ WI 1 A (3.9) 

where now the indices refer to blocks of two of the original spins and 

E is the four by four matrix of Eq. (3. 2). Diagonalizing this sub-Hamiltonian, 

then transforming uLo@ 11’ and no@ oR1 into the new basis, and then 

keeping only the first four levels completes the process. This iteration 

is now carried out until it has converged to a fixed point. The eight 
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state calculation is identical except that the starting Hamiltonian is 

generated from a block of three spins, after which one iterates by combining 

blocks in pairs. (There is another possible iteration scheme suggested 

here which would be to keep only four of the states generated by the block 

of three spins, and then in subsequent iterations combine three blocks at 

a time rather than two. An interesting question is which of these two 

approaches generally leads to a better answer. There is a two parameter 

approximation scheme, like Pad&, i. e. combine n blocks at a time and 

keep M levels each time diagonalizing Mn states. 1 

The results of the numerical studies are quite similar to the two 

2 
state case already studied. For @ > cc, or go small one finds that 

gn2 
+ 0 while 29 tends to some finite limit in the form 

i -3 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 

There is a non-degenerate gr 0l.U 

-7 0 0 0 

En7 
or - 

4 0 0 1 0 

0 0 0 1 (3.10) 

id state, and the remaining states are all 

degenerate and split up by some amount which depends on the starting 

values of E and g2. This is an attempt by the theory to represent the 

first few states of a continuum of single particle excitations labeled by a 

momentum. The static energy of this excitation is the gap between the 

ground state and the first excited state, 2a e,. As a0 is increased towards 
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a critical value this energy difference vanishes. When (Ye increases 

above this critical value (e/g2 z. 97 for 4 states and e/g2 z .98 for 

eight states) things change dramatically. Zngn2 remains finite, also the 

splitting matrix E remains finite (unlike the two state case), but the 

character of both matrices changes. A typical final form for the four 

state case would be 

2nen --Em 

I -1 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 1 
(3.11) 

oL+[.-:; j uR- [i-i i, 

The resulting Hamiltonian is strictly diagonal in spin space. The ground 

state is two-fold degenerate where the two possible ground states are to 

have all of the block spins in either the first (0) or second (1) level. 

Of all of the possible excitations the two candidates for lowest energy are 

al.... ooooiiiil.i. or . . . .1111100000.. . 
E = Zag co 

b).... 00003111i1... or . . ..111120000... 
E = 2a.s co 

(3.12) 
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Both of these correspond to the formation of domains, or soliton like 

states. In the calculations b) was always found to have the smallest 

energy. (In the mean field approximation to be discussed later it is also 

found that the lowest energy state naively has some structure at the domain 

boundary). The results for the energy of the lowest excitation above the 

ground state and the position of the phase transition are indicated in Figure 

3. The starting values were Eoo =o, EO = 1. It is pleasing to note that 

the qualitative features do not change as the approximation is improved, 

and that the quantitative details seem to be rapidly converging. We will 

return to more detailed results of these calculations in the following 

sections, but for reference they are collected in Table I. 
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IV. SIMPLE MINDED CHECKS 

The renormalization group calculations by their nature provide 

upper bounds on the energy density in the ground state. This is because 

the calculation is really a variational calculation in a very carefully 

chosen basis. We can get an estimate of how accurately we have treated 

the ground state by comparing the RG with other upper and lower bounds 

on the energy density. It is also instructive to compare the properties 

of the phase transition with mean field results. 

The mean field or Hartree approximation results if we make the 

ansatz for the ground state 

IO> =@xei xe =(S) (4.11 

i 

The resulting ground state energy density is an upper bound to the exact 

result, and is given by 

E0 - E cos 28 - g2sin2 28 (4.2) 

This is minimized by setting 0 = 0 when e/g2 > 2, and when e/g2 5 2 

by choosing 0 such that 

CO6 20 = ./2g2 (4.31 

This has the earmarks of a second order phase transition. The energy 

density has continuous first, but not second derivative. The matrix 
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element of ox acts as the order parameter, and is zero for E > 2g2, 

but for e< 2g2 is given by m which has the form ((Ye - ~1~ 

near the phase transition, characteristic of the mean field approximation. 

In contrast the RG calculations for 2, 4, and 8 states kept give the form 

(Ly - c 
CZ)’ where p yO.40, 0.46, and 0.45 respectively. The critical 

value of E /g2 is 2. 0 here compared to 1. 26, 0.97, and 0.98 for the RG 

calculation. 

In the limits e/g2 >>1, and r/g2 << 1 we can use simple perturbation 

theory to compute the low lying spectra above the Hartree ground state. 

For g2/e << 1 the ground state has all the spins polarized along t. The 

first excited state of the unperturbed Hamiltonian is degenerate and 

corresponds to flipping one spin anywhere. Diagonalizing H in these states 

gives an energy above the ground state for a spin wave of wave vector k 

e(k) = 2a (e - g2 cos (ka)) (4.4) 

where -x/a <- k 5 v/a. The lowest excitation, k = 0, has an energy which 

agrees very well with the RG results when g2/e is small. For s/g2 << 1 

the ground state is degenerate between the choices f f3 in Eq. (4. 3). 

First leaving 0 as determined there, one can do a variational calculation 

for a static domain wall using a state which has all of the spins in x, e 

to the left or right of the domain center except leaving a few spins in the 

center free, and varying them to minimize the energy. If just one spin 

is free it will orient along t giving an energy 
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e(0) = ae cos(28) - ( I) + 2ag2sin2(20 ) (4.5) 

which is a little smaller than the energy of an abrupt break from -0 to ~3, 

2ag2sin228. If several spins are left free, a smooth transition is formed 

which sharpens up as E * 0. This can be compared with the behavior 

in the RG calculation where some structure was also preferred at the 

domain boundary rather than an abrupt break. A second exercise is to 

set c = 0 and find the states of the unperturbed Hamiltonian. Then treating 

e in the lowest order perturbation theory gives the analog of Eq. (4.4) 

e(k) = 2a(g2 - E cos (kal) (4.6) 

Again the lowest excitation agrees well with the RG results when e/g2 

is small. A comparison of Eqs. (4.4, 6) shows a symmetry under the 

exchange g2 4, E for the perturbation theory results. It is very tempting 

to speculate that this is a property of the exact theory in which case the 

phase transition would be forced to occur precisely at e/g2 = 1. The 

best approximate value of 0.98 for e/g2 is also suggestive. One of the 

most remarkable things is just how well lowest order perturbation theory 

works for the static energy of the lowest excitations. In Figure 4 the 

8 state RG results are compared to Eqs. (4.4) and (4.61. 

Another check is obtained from a lower bound on the energy density, 

which may be gotten by solving a system of N spins exactly with the 

replacement g2 -g’N/(pJ- #! The ground state energy divided by N 
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is a lower bound on the exact energy density. Results of all the calculations 

of the energy density for Eoo =Oand E 
0 

= 1 are presented as a function 

of go in Figure 5. The positions of the approximate phase transitions are 

indicated for the uppg bounds. The lower bound derives from a finite 

system and cannot have a phase transition. This fact yields an interesting 

byproduct for we can see in Figure 6 how the level structure of the finite 

system already begins to show clearly the form of the full theory as the 

number of sites is increased from two to six. The first two excited 

states remain nearly degenerate for e/g2 > 1, and then the first state 

comes down and joins the ground state while the second state goes up 

rapidly. 
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V, TOWARDS THE CONTINUUM 

If we adopt the point of view that the small momentum or large distance 

behavior of the ~6” theory which we began to study in Section II is insensitive 

to the value of the cutoff (l/a) then we are through having shown that the 

theory possesses a phase transition with all of the properties one expected. 

The qualitative features of this transition are determined solely in terms 

of the physics of the two lowest levels. The finer details, like whether 

the excitations in the broken phase are solitons or kinks (domains) or 

normal bosonic excitations of one well of the potential,’ depend on the 

higher states of the local oscillators in H which we have not considered. 

It is still interesting to see how far one can go in constructing a continuum 

theory from the lattice theory, by sending the lattice spacing to zero 

holding the physics of the low lying excitations fixed. In particular we 

first have to find out whether it is even possible to make a finite theory 

as the lattice spacing becomes small. This is a very simple theory and 

there are only two things we can demand. The first is that the mass of 

the lowest excitation should remain finite at some value we will call mR 

for the renormalized mass. The second is that the relativistic energy- 

momentum relation 

2 
e(k) = m 

R 
+& + O(k4) 

R 
(5.1) 

should hold when k is small. These two conditions completely fix the two 
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e and g2 for any value of the lattice spacing (or inverse cutoff). At this 

point the extent to which we have butchered the starting theory is very 

obvious. In keeping only two states of the original local oscillators we 

had assumed that the remaining levels were well split up, and could be 

ignored. A consequence of this assumption is that we have forever lost 

one of our parameters in the starting theory. To begin we will take a 

less ambitious task and set the following exercise: suppose that mR = 1 GeV, 

and thinking that this is a reasonable approximation we ask that there be 

20 lattice points in one Compton wavelength or that a = 10 
-15 

cm = 0.05 GeV 
-1 

. 

First we will try to use perturbation theory to find out what E and g2 

must be, supposing that g2/ E is small. For small g2 and small k from 

Eq. (4.4) we have 

e(k) y 2a (e. - go’) + go2a3k2 

so we must have 

(5.2) 

(5.3) mR = 2a(e0 - go’) = 1/ (2g02a3) 

For our problem this requires 

2 
2 

g0 = 4000 GeV2 
80 

EO = 4010 GeV’ - = 0.997 (5.4) 
EO 

We have not satisfied our starting assumption that g2/ E was small. Now - 

a knowledge of the RG transformation is useful. In the simplest recursion 
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where only two states were kept by means of n RG transformations one 

could rewrite H as 

H = 2”a 
n CC 

En0 - en 03i - gn2+sxi + ‘) 

i 

(5.5) 

The only thing different here for our purposes is the length scale. a has 

been replaced by 2”a. Now we should have 

mR 
= 2n+1 a(e, - g,“) = I/ (23n + ‘gn2a3) (5.6) 

If n is chosen as 6 we find that 

2 
2 

‘6 
= 0.015 GeV2 = 0.640 GeV2 g6 

‘6 
- = 0.024 (5.7) 
‘6 

and one can feel that perturbation theory is a reasonable approach. Now 

at last the RG is put to use to find out what starting values E o and go2 

give the required values after 6 iterations. We actually have a pretty good 

idea what this value will be since we know that there is an ultraviolet 

stable fixed point and 6 iterations would take one very close to it. Having 

solved our exercise we may become more bold and set a = 10 -‘O cm . 

The same procedure will again yield a solution except that this time more 

iterations will be required before one may safely apply perturbation theory. 

In the limit infinite numbers of iterations will be required and we will be 

forced to have go”/ co very close to the critical value with corrections 

which are very small, crudely something like the lattice spacing away. 
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Just how far away depends on the critical exponents which describe the 

phase transition. Before we consider this interesting point, we are obliged 

to note that we could have initially assumed that E was going to be small 

compared to g2. If E can be considered a perturbation then 

e(k) T 2a(g2 - E cos (ka)) (5.8) 

Precisely the same analysis would then yield 

GeV2 
2 

EO = 4000 80 = 4010 GeV2 
EO 

- = 2 0.997 (5.9) 

g0 

and again 6 iterations of the RG would give l 6lg6’ = 0.024. This is a 

remarkable result when a + 0 the same choice of parameters differing 

only by an infinitesimal amount can lead to two completely different finite 

theories, and for no other choice can one obtain a finite theory. Actually 

this is not surprising at all if one studies the form of Eq. (2.1) one realizes 

that it is u2 not p2 + s 
c ) 

which we expect to be important when a -0, 
a 

but if we had begun just with the spin system we might have been surprised. 


